An effective approach for classification of advanced malware with high accuracy

نویسندگان

  • Ashu Sharma
  • Sanjay Kumar Sahay
چکیده

Combating malware is very important for software/systems security, but to prevent the software/systems from the advanced malware, viz. metamorphic malware is a challenging task, as it changes the structure/code after each infection. Therefore in this paper, we present a novel approach to detect the advanced malware with high accuracy by analyzing the occurrence of opcodes (features) by grouping the executables. These groups are made on the basis of our earlier studies [1] that the difference between the sizes of any two malware generated by popular advanced malware kits viz. PS-MPC, G2 and NGVCK are within 5 KB. On the basis of obtained promising features, we studied the performance of thirteen classifiers using N-fold cross-validation available in machine learning tool WEKA. Among these thirteen classifiers we studied in-depth top five classifiers (Random forest, LMT, NBT, J48 and FT) and obtain more than 96.28% accuracy for the detection of unknown malware, which is better than the maximum detection accuracy (~95.9%) reported by Santos et al (2013). In these top five classifiers, our approach obtained a detection accuracy of ∼97.95% by the Random forest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Malware Detection using Classification of Variable-Length Sequences

In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...

متن کامل

An automated approach to analysis and classification of Crypto-ransomwares’ family

There is no doubt that malicious programs are one of the permanent threats to computer systems. Malicious programs distract the normal process of computer systems to apply their roguish purposes. Meanwhile, there is also a type of malware known as the ransomware that limits victims to access their computer system either by encrypting the victimchr('39')s files or by locking the system. Despite ...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

An Effective Approach to Detect Malware that Exploit Information Hiding in Android Devices

A Malware is a very big threat in today’s computing world. It continues to grow in volume and evolve in complexity. Modern malware uses advanced techniques to hide from static and dynamic analysis tools. The existing system uses classification based and regression based approach for detection. The proposed system utilizes the classification based approach and regression based approach for detec...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.06897  شماره 

صفحات  -

تاریخ انتشار 2016